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L E W R  TO THE EDITOR 

Renormalisation procedure for the quasiperiodic 
Schriidinger equation 

W M ZhengtS 
Center for Studies in Statistical Mechanics, University of Texas at Austin, Austin, TX 
78712, USA 

Received 14 February 1986, in final form 22 May 1986 

Abstract. A renormalisation procedure is constructed for the one-dimensional Schrodinger 
equation with a quasiperiodic potential. The renormalisation transformation has a trivial 
fixed point describing the behaviour of the system near the unperturbed free motion, and 
a non-trivial fixed point corresponding to the critical case. A number system of an irrational 
base is introduced for the scaling of the spectra. 

The Bloch theorem applied to a perfect crystal with certain translation invariance states 
that all the eigenfunctions of electrons are plane waves modulated with functions of 
the same periodicity. Under an incommensurate perturbation, e.g. created by the 
Peierls instability, the potential in the crystal becomes quasiperiodic. There is no 
longer any true translation symmetry and the Bloch theorem cannot be applied. The 
quasiperiodic potential represents a natural intermediate case between periodicity and 
randomness. Dinaburg and Sinai [ 11, proving the existence of quasiperiodically 
modulated plane wave eigenfunctions for some eigenenergies, have partially extended 
the Bloch theorem to a quasiperiodic potential. 

Here we shall consider a specific simple quasiperiodic model: 

++ ( A  COS 27rx + A2 COS 27rwx) $ = E$ dx2 

with w being the inverse golden mean, 

w = (O)-' =i( f i -  1) = [O; 1, 1, . . .] = lim F,,/F,,+, 
n-m 

where the Fibonacci sequence {F,,} satisfies F,+, = F,, + F,,-l, Fo = 0, Fl = 1. We shall 
construct a renormalisation procedure for the model. By means of the renormalisation 
transformation it is possible to study the property of the model near the critical 
amplitudes of the potential where the Bloch-like eigenfunctions begin to disappear. 

It is generally believed that by means of renormalisation group methods the 
numerically observed scaling properties [2, 31 of the spectra and wavefunctions of 
quasiperiodic Schrodinger operators can be studied most conveniently. There are two 
main ways of carrying out renormalisation: by a non-perturbative method [3,4] or by 
an approximate one [ 5 ,  61. The former, known as exact renormalisation, is based on 

t On leave from the Institute of Theoretical Physics, Academia Sinica, Beijing, China. 
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the scaling hypothesis and the procedure of renormalisation is constructed in a func- 
tional space. The theory is in quantitative agreement with the numerical observations. 
The approximate one is not so accurate, but the procedure of renormalisation is 
constructed in a parameter space, so is much simpler. Furthermore, the method 
provides a simple physical picture for understanding the existence of the scaling 
properties. In both cases the exponents that characterise scaling behaviour are related 
to the eigenvalues of the linearised renormalisation transformation near the fixed 
points. If under the renormalisation transformation different quasiperiodic Schrodinger 
operators flow to the same fixed point, then they will share the same scaling behaviour 
(the so-called universality of the scaling exponents). The methods have been applied 
to the discrete quasiperiodic Schrodinger equation by using the 'real space decimation' 
technique [3,4, 61. Instead, in this letter, we shall extend a 'momentum space Killing' 
technique [ 71 to study the continuous quasiperiodic Schrodinger equation. 

For equation (1) the Bloch-like eigenfunctions, if they exist, can be expressed as 

The most important modes are the slow 'near-resonant' ones, i.e. terms with I w + m  
close to zero. These are Zw + m = Fn+,o - F, = y.. We shall focus our attention only 
on these modes. For convenience, we denote by a, the Fourier coefficient clm with 
1 = F,,, and m = -F,, define y-l = 1 and add the superscript (O) to $, A l  , A*, x and E 
in equation (1). 

We first make the transformation of the argument 

2sx(O) = 2 d 0 ) +  do) sin 2 d 0 )  

where e'') is a constant. The transformation converts a function periodic in x(O) to 
one that is periodic in 8") with the same period, and brings equation (1) into the form 

[d/de(o)]2$(o)+ {A$o'Jo(we'o') COS 2.rr0d~) 

+ A$o'[Jo(we'O')e'O'+Jl(we(o))] cos 2s(w - 1)8'o)}$'o' 

- [A~o)Jo(e'o')  - 2e'o)E(o'] cos 2 ~ 8 ( ~ ) $ ( ~ )  

={E(' ' -  A~o'[eco~Jo(e'o~)+Jl(e~o~)]}$~o~-2~e'0~sin 2 ~ 0 ' ~ '  d$'o)/d8(o' 

where J ,  are the Bessel functions and we have dropped all the higher-order terms. We 
now split $(') into two parts q ( O )  and $(') = $(')- Q") in such a way that 

20) Q ( 0 )  = E'l)Q(0) -{2se'0' sin 2 ~ 8 ' ~ '  d/dO"' 
(40) 

(4b) 

2 ( ' ) $ ( l )  3 y;[d/d~")]~$(')+ ( A i 1 )  cos 2 ~ x ( ' ) +  A i 1 )  cos 2 ~ 6 ~ x ( ~ ) ) $ ( ' )  = 

+ [ A ~ ' J o ( e ' o ' )  -2e'o)E'o)] cos 27~8(~)}$(~)  

with the notation 

6, = Ym/Ym-1 x ( l )  = 6 , ~ ( 0 )  = do) E ( ' )  = E(') - A y ) [  e(')Jo( e(')) + J1( e'")] 

A( ' )  1 = A(0)  2 Jo(we'O9 

Assume that at step m we have 

A") 2 = A$"[J0( we(o) )e (o )  + J1( we'0))]. 

g ( m ) $  ( m ) -  = yZ,-l[d/d~'"']2$'"' 

+(A','"' COS 2m~'"'+A$"' COS 2.rr6,x'"'))$(")= E("')$(,) ( 5 0 )  
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where J:" = J,( e'")). The transformation 

~ T x ( ~ )  = 2 d m ) +  e"' sin 2 d m )  

converts equation ( 5 a )  to the same form as equations ( 5 )  with m + 1 taking the place 
of m and with the new notation 
JLm) = j Y ( a m e ( m ) )  X ( m + l )  = s m e ( m )  E ( m + l )  = E h )  - A\m)( j \m)  + , ( m ) j L m ) )  ( 7 a )  

and 

A ( m + l )  1 = A 2  ( m )  Jo ' ( m )  A \ m + l )  = A';")( jbm)e(m) - j \ m ) ) .  ( 7 b )  

In the above derivation we have used the property 

( 7 c )  # m )  - X(m) = 6 Sm-1Sm-2.. . 6,6'0'= ym-l 6(0) m-1 

and have kept only the near-resonant modes. 
We now make the ansatz for the solution to equation ( 5 b ) :  

cp("') = exp(i2wkx)[am e x p ( i 2 ~ P " )  + a-,,, exp(-i2~6("))] 

gem) = exp(i2d.x) + q~('"). 

(8) 

which 'kills' slow modes one by one. Correspondingly, we make the approximation 

(9) 

From equations (8), (9) and ( 5 b )  we find the equations for a,,,, a-, and e("'): 

m-w 
where we have used the property J i m ) -  1 for small e'"' and ym = (-l)'"wm+' - 0 
to keep only the leading terms. Equations (1 1 b )  and ( 7 b )  constitute the renormalisation 
transformation. 

From the above discussion we see that in every step of iteration the transformation 
(6) separates the lowest mode (i.e. the mode corresponding to ym with the smallest 
m) from the higher modes to obtain equations for cp and $, respectively. The equations 
for cp and @ retain the same form at every step, so the original equation reduces to a 
map in the parameter space. The simple form of the transformation (6) and the fact 
that the wavefunction is mainly determined by the modes corresponding to the 
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Fibonacci numbers allow us to work in a parameter space with a very small dimensional- 
ity. In this way we can relate the energy spectrum to the 'naked' one (i.e. -4r2k2) to 
write (see equation ( 7 a ) )  

I=O 

m 

a,  exp(i2rym-,x)+ a-,,, exp(-i2ny,-,x)). (13) 

We now investigate the property of the renormalisation transformation. For sim- 
plicity, we make the approximation ?jm) - 1, ji"')- 6,e'")/2, and introduce a new 
variable r'"') = Aim) /A\ '" ) .  It can be seen from the renormalisation transformation that 

from which we obtain 

(15) = 62(1- 

Therefore, the mapping (14) has two fixed points ( ro ,  eo) = (0,O) and ( r* ,  e* )  = 
( w 2 , 2 w 2 / ( 2 - w ) ) .  Near the fixed point ( r * ,  e* ) ,  by introducing the new variables 
(P, Q )  = (In r - In r*, In e -In e*) ,  the two eigenvalues of the tangent mapping can 
easily be determined to be 

A , =  --w A,=l+w=G 

which means that the fixed point is hyperbolic. At certain initial values A I  and A 2 ,  the 
iteration (14) will bring ( r ,  e )  to the fixed point ( r* ,  e*), and form the stable manifold 
of the mapping. When A I  and A 2  correspond to a point below the stable manifold in 
the r-e space, the iteration will finally bring (r, e) to (0, 0), and the system is then 
essentially equivalent to the unperturbed free motion. The behaviour of the system 
near the fixed point ( r * ,  e*) is mainly described by its unstable eigenvalue A,. An 
important straightforward result is the fact that, from equation (1 1 a ) ,  we have near 
the fixed point on the stable manifold 

a+,,,y,,, =constant. 

In the above we consider only the reciprocal golden mean incommensurability. 
However, from the derivation of the renormalisation equations one can see that the 
same asymptotic behaviour is shared by all 'noble' irrational numbers-those whose 
continued fraction ends in an infinite string of ones. Since these numbers are dense 
on the real axis, they can be used to approach any given irrational number. For a 
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direct extension of the discussed procedure to a general irrational number g =  
[ao, a , ,  a 2 , .  . .] with the convergents {pm/qm) ,  it is necessary to redefine ym = q m g - p m ,  
replace the transformation (6) with 

x = 8 + e  sin be 

and determine the constant b from ai. The fact that all noble irrational numbers share 
the same asymptotic behaviour of the renormalisation transformation is the universality 
in incommensurability. 

From the derivation of the renormalisation transformation one can also see that if 
the quasiperiodic potential contains more; but finite, terms of the form C O S [ ~ T (  m + 
nw)x + 41 with m, n being integers and 4 a phase constant, then the fixed points of 
the renormalisation map and the eigenvalues on these points are unchanged. This is 
the universality in potential components. Combining this with the universality in 
incommensurability, we can add to the potential more terms that include periodicity 
of the noble numbers. 

In the above discussion the role played by the 'quasimomentum' k has been almost 
ignored. However, it is essential to the understanding of the scaling of the spectra. 
To sketch how the role of k can be considered let us introduce a number system of 
an irrational base. The reciprocal golden mean w satisfies the relation w 2  + w = 1 or 
w n + l + w n  = w n - l .  Like the usual binary system of base 2 we can construct a new 
number system with the irrational base w. Any given number a E ( 0 , l )  can be expressed 
in terms of powers of w as a = X i s N  a#' with all ai being integer 0 or 1. We thus have 
the representation a = ( a , ,  a2, . . .). As an example we can write = (0, 0, 1, 0, 0, 0), a 
representation of cycle 6. The representation is unique except for the ambiguity 
(. . . ,0, 1,1,. . .) =(. . . , l , O ,  0,. . .). We can define the one on the RHS as standard. 
(Note the ambiguity in the binary system . . . , 0, 1 = . . . , 1.) In our representation 
system the sum of any two successive powers of w recovers the preceding one, so the 
system can be regarded as second order, while in the same sense the binary system is 
first order. Once we find the w representation for the quasimomentum k, then, recalling 
the relation w n  = (-l)"-'(F,,w -FnV1) = (-l)n-l-yn-,, we see that every digit 1 in the 
w representation of k will produce extra 'mode-mixing'. If we take the case of k = a  
as an example, a six-step renormalisation map should be constructed and k shifted 
after every six steps. There is then another universality in that different quasi- 
momentums with the same ending in the w representation share the same asymptotic 
behaviour in the renormalisation iteration. The method is tractable for those quasi- 
momentums ending with a short cycle in the w representation. The one-step version 
we discussed earlier is good mainly for k - 0. After the fixed points of the renormalisa- 
tion map are determined, the scaling properties of the spectra can be readily obtained. 

The details of the above discussion, the justification and improvement of approxima- 
tions and investigations of the critical scaling properties and other related problems 
will be presented later. 

- 
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